
HCL Leap and Enterprise Directory (LDAP)

Introduction
The corporate enterprise directory, or LDAP, is the most common target of integration with HCL

Leap. HCL has provided a transport and a few sample service descriptions that can be used to

perform this integration.

When the transport and associated service description XML files are deployed, then application

designers can setup their applications to auto-populate user information. This document describes

how to configure and deploy all the artifacts necessary to enable applications to communicate with

LDAP.

Transport Properties
The transport defines properties that must be referenced in the service description XML files. These

properties define how the transport behaves. All the properties are listed in the tables below.

Input Parameters
url Required The URL to the LDAP

basedn Required The basedn of the LDAP query

filter Required The LDAP filter to use for the search. For example:

<constant>
 <id>filter</id>
 <value>(&
(objectClass=person)(managerSerialNumber={0}*)(managerC
ountryCode={1}*))</value>
</constant>

filter-arg-x Required For every search parameter in the filter this defines what will
be used for the search. For example:

 <mapping target="transport:filter-arg-0"
source="parameter:searchSerialNumber" />
 <mapping target="transport:filter-arg-1"
source="parameter:searchCountryCode" />

These mapping statements will substitute the "0" in the LDAP
filter with the value of the searchSerialNumber value passed
to the service and "1" with the value of the
searchCountryCode value passed to the service.

A Transport is an OSGI bundle, written in Java, that implements HCL Leap

extension points. Service Descriptions are XML files that define the inputs and

outputs that are used by the transport. To discover more about implementing

your own Transports reference our documentation.

http://leap.hcldoc.com/help/topic/LEAPv9.0/LEAP/ex_soa_service_transport.html
http://leap.hcldoc.com/help/topic/LEAPv9.0/LEAP/ex_soa_service_transport.html

result-attributes Required Comma separated list of the LDAP attributes to return in the
search results. If unspecified then all attributes are returned.

bind-user Required The username required to connect to the LDAP. Required if
using this transport with WAS Liberty.

bind-password Required The password required to connect to the LDAP. Required if
using this transport with WAS Liberty.

result-count Optional Limits the number of records returned from LDAP. If
unspecified the default is 50.

sub-filter-x Optional A secondary LDAP query to execute for each record of the
first result set.

sub-filter-arg-x Optional Value should start with "result-attribute:" to reference an
attribute from the first result set, this will be used to replace
the integers in the filter.

<constant>
 <!-- OPTIONAL: The filter variables must be
specified in this format "result-attribute:<name-of-ldap-
attribute>"
 the "result-attribute" value tells the
transport to pull the attribute from the parent result set.
 -->
 <id>sub-filter-arg-0</id>
 <value>result-
attribute:hrOrganizationCode</value>
 </constant>

sub-result-attributes Optional Comma separated list of the LDAP attributes to return in the
search results. If unspecified then all attributes are returned.

sub-result-count Optional Limits the number of records returned from LDAP. If
unspecified the default is 50.

return-multiple-attr Optional If true, then all attributes will be returned including those
with multiple values. If false then only the first attribute will
be returned. Valid values are true or false. Default is false.

Output Parameters
resultXML The XML containing the LDAP search results.

<searchresults>

 <searchresult>

 <ldapattrribute1/>

 <ldapattrribute2/>

 <subsearchresults>

 <subsearchresult>

 <ldapattrribute1/>

 <ldapattrribute2/>

 </subsearchresult>

 </subsearchresults>

 </searchresult>

</searchresults>

Note: "ldapattributex" will need to be replaced with the actual attributes in

your LDAP.

Deploying the Transport
The transport is a .jar file that must be deployed into the file structure for HCL LEAP. All extensions

are placed into the extensions directory. The default location is /opt/HCL/Leap/extensions or

C:\HCL\Leap\extensions. You can discover more by referring to our documentation.

Once the jar file has been placed in the extensions directory you will see a message written to the

log file indicating that it has been loaded and is ready for consumption:

[6/11/18 10:07:14:550 PST] 0000007a DirectoryWatc I

com.ibm.form.platform.service.framework.DirectoryWatcher processArtifact FSPDI5: The

Bundle, <ExtensionName>.jar loaded successfully.

Configuring the Service Description
Creating a service description is a one-time action that once completed, provides the function to all

HCL Leap application designers. Three service descriptions have been provided as examples of the

kind of functionality that can be provided with an integration with LDAP. This document will use the

most common service as the example.

Setting up the Global Parameters
1. Open the LDAPLookup_GetEmployee.xml in a text editor. Do not use Notepad or Wordpad,

instead use a proper editor like NotePad++, UtraEdit, etc.

2. The <id>, found on line 3, must be a unique value (not used by any other xml files deployed

with Leap) as this is how the service is registered with Leap.

3. The <transportId>, on line 6, must be set to CustomLDAPServiceTransport

4. The <name>, on line 13, is the name of the service that will appear in the service

configuration dialog within Leap, therefore insure it is something that your users can

recognize.

5. The <description>, on line 14, will appear in the service configuration dialog and should

provide a clear description of what the service provides.

Setting up the Inbound Parameters
1. The <inbound> element is where all the parameters are defined that will be passed to the

transport. In this example, there are three: searchName, searchEmail and searchUID. Each

parameter follows the same format

http://leap.hcldoc.com/help/topic/LEAPv9.0/LEAP/co_configuring_the_properties_file.html

<parameter>

 <id>searchName</id>

 <name xml:lang="en">Search Name</name>

 <description xml:lang="en">The employee name to search

for.</description>

 <mandatory>false</mandatory>

 <type>STRING</type>

</parameter>

Configure each parameter.

• The <id> must be unique, and will be referenced in

the inbound <servicemapping> section

• The <name> and <description> will appear in the

dialog within Leap

• If <mandatory> is true, then the service cannot be

saved without specifying this value.

• <type> defines the data being provided. The other

types are documented, but in this case, all will be

STRING.

Setting up the Constants
1. Define the URL to the LDAP server on line 45.

2. Define the baseDN that will be used for the LDAP queries on line 50.

3. Define the filter that will be used to define the LDAP queries on line 55.

<value>(&(objectClass=person)(cn={0}*)(emailAddress={1}*)(uid={2}*))</value>

4. Define all the LDAP attributes, on line 61, that you want to be returned from the LDAP

query. This is a comma-separated list. Note: For every attribute listed here you must create

a corresponding parameter definition in the <outbound> section of the XML file.

5. Define all the inbound mappings, lines 70-81. The inbound mappings connect the

parameters and constants defined in the XML file to the transport parameters. The only

mappings that you may have to modify are the filter-arg-x as your search parameters may

differ.

Setting up the Outbound Parameters
You must define an outbound parameter for every attribute listed in the result-attributes. The

outbound parameters all follow the same structure.

The 0,1 and 2 shown in this filter reference the input parameters defined at the

start of the service description. In this case 0 is searchName, 1 is searchEmail

and 2 is searchUID. When this filter is executed the numbers will be

dynamically replaced with the value passed in from the Leap application calling

the service.

<parameter>

 <id>cn</id>

 <name xml:lang="en">Employee's Full Name</name>

 <description xml:lang="en"></description>

 <type>STRING</type>

</parameter>

Configure each parameter.

• The <id> must be unique, and will be referenced in

the outbound <servicemapping> section.

• The <name> and <description> appear in the

service dialog

• The type defines what is being returned.

All the parameters defined within the <outbound> section

will appear in the service dialog on the Outputs tab.

For every outbound parameter, there must be a corresponding <mapping>. To properly configure

the service mappings, you must understand what is being returned from the LDAP query. In this

case, the LDAP will return XML that looks like:

<searchresults>

 <searchresult>

 <ldapattrribute1/>

 <ldapattrribute2/>

 <subsearchresults>

 <subsearchresult>

 <ldapattrribute1/>

 <ldapattrribute2/>

 </subsearchresult>

 </subsearchresults>

 </searchresult>

</searchresults>

Now that we know the structure we can create the mapping that places individual elements from

the result and assigns them to the corresponding output parameters. Take the following mapping as

an example:

<mapping source="transport:resultXML" target="parameter:cn"

sourceRef="string(searchresults/searchresult[1]/cn)" sourceType="xml" />

This mapping assigns the “cn” value from the xml result to the “cn” parameter.

Once all the mappings are defined you are ready to deploy the service and start using it.

Deploying the Service Description
The XML files must be deployed to the ServiceCatalog/1 directory.

Once the xml file has been placed in the ServiceCatalog/1 directory you will see a message written to

the log file indicating that is has been loaded and is ready for consumption:

[6/11/18 10:07:45:904 PST] 0000008a ServiceFileCa I

com.ibm.form.nitro.service.services.impl.ServiceFileCatalogDirectory add Registering service

description in C:\HCL\Leap\ServiceCatalog\1\<ServiceFileName>.xml.

If you do not see this message within 60 seconds, then starting and stopping the Leap application

(not WebSphere) will also cause the file to be picked up. Note: If there is a syntax error in the XML

file then you may also see a message in the log and the service will not appear in Leap.

Using a Service within HCL Leap
Now that the service is deployed you can begin using it within your applications.

1. Edit an application.

2. Click on the Settings tab.

3. Under Services, on the left-side, click one of the forms.

4. Click Add Service Configuration.

5. Select “Or, select a service”

6. Set the Service Catalog to General.

7. Locate and click on the service in the list below

The sourceRef attribute enables the use of XPath to manipulate the XML that

is returned from the service. This allows us to pull content out of the XML

structure and assign it directly to an outbound parameter.

8. Click Next.

9. Decide how you want to perform the employee lookup. Will it be based on the current

user? Or will the user of the form be entering some key information (like email address or

uid) to then load details about that person? In this example, I want to automatically load the

name of the current user. Click Current User and then connect it to the appropriate search

parameter. In my implementation of Leap user’s login with their email address, therefore I

would connect the Current User with the Search Email.

10. Click the Outputs tab across the top or click Next (at the bottom).

11. Connect the LDAP result values (shown on the left) to the fields you have defined in your

form (shown on the right).

12. Repeat the action of connecting the fields until all the desired fields are connected.

13. Click Next.

14. Give the service a meaningful ID and Description and click OK.

15. Now that the service is created we need to call it. In this case,

we will call the service when the form is just launched by a new

user. In the Outline View click on the gear icon for the Form.

16. Click on Advanced.

17. Click Call a service to pre-populate

18. In the “On display of New form” dropdown, select the service.

19. Click OK.

20. Save and preview the form. When the form opens, you should notice that your information

is automatically loaded into your form.

