
Forms Experience Builder (FEB):
Rules Wizard

Version 8.5/8.6

Table of Contents
A detailed look at the FEB Rules Wizard...2
Operators Explained...4
Actions Explained..5
Simple Rule 1 – Radio Selection...6
Simple Rule 2 – Numeric Comparisons...7
Rule with an AND Condition...9
Rule with an OR Condition..10
How to Handle More Complicated Logic..10

A detailed look at the FEB Rules Wizard

1. If you want to add a new rule you must first click the Add Rule button. When the wizard loads it
will default to the first rule in the list and if you make changes then you are changing that rule!

2. All the rules in the form will be listed here.
- A rule can be deleted by clicking the “x”
- In FEB 8.5/8.6 rules cannot be renamed

3. When you select an item in the Show Related dropdown then all the rules that reference or affect
this item will be denoted by the symbol in the diagram.

- The icon (field with gray arrow) to the left of the rule name is tied to the value of the Show
Related dropdown.

4. Every rule starts with a condition that must be met.
- The first dropdown contains all the form fields that can be used in a condition
- The second dropdown contains the valid operators which change depending on the datatype of the
item you select in the first dropdown.
- The third dropdown changes the reference from a fixed value to the value of another item in the
form.
- you can add more conditions by clicking the “+”
- you can only have one type of relationship between the conditions (either “AND” or “OR”)

5. Each Rule can perform multiple actions; hide/show, enable/disable, required/not required, valid/not
valid.
Note: When you define an action then the inverse is also true. For example in the above screenshot, if
married equals “yes” then name of spouse will be shown which also means if married is “no” or not
selected then name of spouse will be hidden.

As you create rules it is important to remember that rules can affect each other and in some cases
completely counteract what you have defined. You should never refer to the same item in the “Perform
this action” section for multiple rules. The general rule here is that if there are conflicts then the “last”
rule wins.

6. Apply will create the rule but leave the dialog open
Apply and Close will create the rule and close the dialog.
Cancel will close the dialog and it will not keep any changes made since the last time “Apply” was
clicked or the dialog was opened.

Note: If you navigate to a different rule, before applying your changes you will see a dialog:

If you click “Apply Changes” then your rule modifications will be saved. If you click “Disgard
Changes” then any changes made will be thrown away. If you click “Cancel” then the attempt to
navigate away from the current rule will be canceled.

Operators Explained
Number/Currency Field

Between Checks if the selected field value is between either two fixed values or other
form items.

Does not equal

Equals

Greater than

Greater than or equals

Less than

Less than or equals

SingleLine Entry / Email / Multi-line Entry

Between Checks if the value of the selected field falls alphabetically between either
two fixed values or other form items. i.e. “Red” is between “Green” and
“Yellow” because “R” is between “G” and “Y” in the alphabet. Case matters
here, as the string is evaluated against the alphabet by first scanning the
uppercase letters (A-Z) and then the lowercase (a-z). For example if you
specified between “Green” and “brown”, then “Red” would be valid but
“red” would not, because the alphabet range would be A-Z + a-b.

Contains Does the specified string contain the fixed value or other field value. This
function recognizes case.

Ends With Does the specified string end with the fixed value or other field value. This
function recognizes case.

Equals Does the specified string equal the fixed value or other field value. Case
matters, “c” does not equal “C”.

Follows Does the specified string come after the fixed value or other field value in the
alphabet. i.e. “Red” follows “Green”. This function recognizes case.

Matches Does the specified string match after the fixed value or other field value.
Similar to contains, it is true if the specified string can be found anywhere in
the value. This function recognizes case.

Precedes Does the specified string come before the fixed value or other field value in
the alphabet. i.e. “Red” precedes “Yellow”. This function recognizes case.

Starts with Does the specified string start with the fixed value or other field value. This
function recognizes case.

Select One / Checkbox / Dropdown

Equals This function recognizes case.

Does not equal This function recognizes case.

Select Many

Matches This function recognizes case.

Does not match This function recognizes case.

Includes This function recognizes case.

Does not include This function recognizes case.

Time / Timestamp

After

Before

Between

Equals

Date

After Returns true if the date specified is “after” the exact value or the value of the
other form item specified.

Before Returns true if the date specified is “before” the exact value or the value of
the other form item specified.

Between

Day is Compares the day of the date specified with an exact value or the value of
another item.

Equals

Month is Compares the month of the date specified with an exact value or the value of
another item.

Year is Compares the year of the date specified with an exact value or the value of
another item.

Actions Explained

Show Shows the specified fields

Hide Hides the specified fields

Enable Enables the specified fields

Disbale Disables the specified fields, they will appear as light gray and cannot be
interacted with.

Valid Sets the field to valid.

Not Valid Sets the field to invalid, a red message will appear under the field and a
exclamation will appear before the field label.

Required Sets the field to required. The form will not submit unless the value is
entered. User will receive a warning if they try to navigate to a different
page without filling in the value.

Not Required Sets the field to not required (optional).

Simple Rule 1 – Radio Selection
This rule will make the Name of Spouse field visible and required if the user selects “Yes” to the Are
you married question.

When you first render the form the Name of Spouse field is not shown:

When you select Yes the Name of Spouse field appears and becomes required:

Simple Rule 2 – Numeric Comparisons

We will look at a few different rules in this section. The first rule will cause Field 1 to be shown and
set to required:

The second rule will cause Field 2 to be enabled for user input:

The third rule will set Number 2 to invalid if its value does not match what is entered in Number 1:

Note that this rule uses the “Another item” selection that allows you to compare one field to another on
the same form. In the “Perform this action” section you can also see that we can set the field to invalid
and set the message that will be displayed when the condition is met:

Rule with an AND Condition

In this section we look at creating a rule where two fields are part of the condition. If the value of both
AND 1 and AND 2 is “Yes” then show Field 5.

Note that you can only have ONE relationship when you have more than one field in the condition. If
you need to have more complicated logic then you will have to refer to that section further in the
document.

Rule with an OR Condition

In this section we look at creating a rule where two fields are part of the condition. If OR 1 or OR 2

equal “Yes” then we will show Field 6 and make it required.

How to Handle More Complicated Logic
The Rules wizard does have its limitations and you may find that you have certain scenarios where you
need additional flexibility. You can create your own customized behavior by using JavaScript. Let's
review what that might look like.

Let's say that we want to establish a rule where a field will only appear if ONLY 1 and 2 are selected or
ONLY 5 and 7 are selected (but not both). I would write a JavaScript function like this:

app.getSharedData().showField1 = function() {

 var v = BO.F_SelectMany.getValue();

 if((v === "1__#__2") || (v === "5__#__7")) {

 form.getPage('P_NewPage').F_SingleLine4.setVisible(true);

 } else {

 form.getPage('P_NewPage').F_SingleLine4.setVisible(false);

 }

}

Within JavaScript we can leverage its full power and therefore create any complex comparison. There
are a few things that you need to know to get started creating your own logic:

1. The AND operator in JavaScript is &&

2. The OR Operator in JavaScript is ||

3. The value of a Checklist is a list of the selected items separated by “__#__” (that is underscore
underscore number sign underscore underscore).

4. You can affect an item's behavior by using the functions; setVisible(), setRequired(), setActive(). In
all cases you pass either true or false.

To use this function, I add the following to the Form onLoad event as well as the onItemChange event
of the item that the user interacts with (in this case it is the Checklist):

app.getSharedData().showField1();

The purpose for calling this function in multiple places is that we need to make sure that we evaluate
the state of the field when the form loads and again when the conditional item changes.

Here you see the function in action:

Let's say you want to have 1 and 2 or 5 and 7 (where all 4 selected is also valid), then you would
modify the function to:

app.getSharedData().showField1 = function() {

 var v = BO.F_SelectMany.getValue();

 if((v.indexOf("1") !== -1 && v.indexOf("2") !== -1) ||
(v.indexOf("5") !== -1 && v.indexOf("7") !== -1)) {

 form.getPage('P_NewPage').F_SingleLine4.setVisible(true);

 } else {

 form.getPage('P_NewPage').F_SingleLine4.setVisible(false);

 }

}

Let's look at another complex rule:

For this one, we will only show Field 4 if the user selects 3 and 4 and not 6. The function looks like:

app.getSharedData().showField2 = function() {

var v = BO.F_SelectMany.getValue();

if((v.search("3") != -1 && v.search("4") != -1) && (v.search("6")
=== -1)) {

 form.getPage('P_NewPage').F_SingleLine5.setVisible(true);

} else {

 form.getPage('P_NewPage').F_SingleLine5.setVisible(false);

}

}

For more information on what functions are available when writing your own JavaScript refer to our
Knowledge Center.

Now that we have demonstrated several different ways of creating rules within a FEB application you
should be well equipped to start creating dynamic behavior in your forms.

We are constantly evaluating our features and functions in an effort to make them easier to use and
feature rich. If you have any recommendations or have encountered any issues please let us know!

http://www-01.ibm.com/support/knowledgecenter/SS6KJL_8.5.0/FEB/ref_jsapi_objects_and_functions.dita

