Building a Complex Application: Customer Tracker

Built using FEB 8.6

Table of Contents

DIESCIIPTION. ..cevieiiieeiie ettt ettt et et et e et e e bt e eabe et eeesbeesseesabeesseeesseensaeenseenseeasseensaesnsaenseessseensseeennsseesnnses 1
Design Features Demonstrated in this APPlICAtION........c.eiieviiiiiiiiiiie ettt ee e 1
APPLIcation FUNCHONAIIEY.......cccviiiiiiiieiiecieeiie ettt ettt et e e eetaeseseeesstseeeesssaeeennseeennnees 1
BaASIC STIUCKUTE.....cooieiieiiiiiee ettt e e e e ettt e e e e e e e et b e e e e e eeesssassaaaaeeeeesessssanaabeeeeeeesaeeens 1
CrEate CUSTOIMCT uvvireeeieeeeeeectieeeee e e e e eeeeitrreeeeeeeeeesataareeeeeeeeeansassaeeeeseeeeessssrreeeeeeeseesesssssnnnsnnnnns 2
VIEW CUSTOIMIETS.eevteiiiieee e e e ettt e e e e e e e ettt et e e e e e s eeabatereeeeeessesaaaaseeeesesssssssaaaeseeeessssssasaabreeeeaeeeaees 4
UPAALE CUSIOIMETc.evieiiieeiieetieeiieeiee et et eetteeteeseteeseessaeesseessseesseessseasseessseenseesseasseenssseesnsseeesnsseens 6
Get the Selected Customer Detail.........coooovvviiiiiiiiiiiiiiie e 6
Create CUSTOMET INOTC.....ccuvviveiiieeeeeeectieee e e e eeeeere et e e e e eeeeab e e eeeeeeeeseaarreeeeeeeeeensatsnreeeseeeeeannranrees 9
(@13 15110) 00 153 Wl Bz) (=TSSR 10
Add CuStomEr NOtE SECTION........cccuviiiieirrieeeieieeeeeeeeeeeeeee e e eeee e eeeaeeeeeetaeeeeeeaaeeeeenareeeeeas 10
CUSTOMET NOLES TADIE. ... et e e e e e e e e e e e e e e e eeeeaaaes 13
Applying the Concepts to Your OWn APPlICAtIONS..........cecuierieeiiierieeieenieeieesee et esieeeveesaeeeiveeessseeens 13

Description

The purpose of this application is to track customer interaction. As the organization interacts with
customers they record that interaction in this application. They can create new and update existing
customer records. They can attach notes to client records to keep track of the latest activity.

Design Features Demonstrated in this Application

— using a form as a custom Ul

— using a form to capture data that will not be viewed by users
— calling services to access data in another form

— triggering code after a service completes

— removing the action buttons from a table

Application Functionality

In an effort to help you understand how this application was built we will break it down into its
functional parts and look what is required to make each one work. We will look at the basic structure
of the application as well as what is required to create customers, update customers and to add notes to
a customer record.

Basic Structure

When building an application the first thing to consider is the structure. This application will keep
track of customers for which we need a table-like structure. Each customer can have numerous notes

and therefore we need a second table-like structure to hold the notes. There are two ways to look at
designing an application like this:

1. Each table-like structure that is needed is a form within the application

2. The table-like structure for the customer is a form, however the notes would be kept in a table
object of that same form.

3. The Customer form would be the form rendered to the user and contain the data.

Let's pause for just a moment and look at which of these approaches is best. The most significant
limiting factor is the ability to dynamically update a table object using a service. As of FEB 8.6 you
can only perform search, retrieve and create operations on a table. You cannot update individual rows
of a table, therefore #2 is not really viable.

Outline
There is a little bit of extra work that has to go into the first option as we Ul Form =+ R
have to associate the rows of the Notes form with the correct row of the : -
Customers form. 3| | Page1 .
The design chosen in this example is to create a Customer form slalw X
(data_Info) and a Notes form (data_Notes) and then a form that will be # = data_Notes El v &
what the user's interact with (Ul Form). By creating a separate Ul form it | _ data Info 5 K%

allows us to keep the data in the other tables pure, in that we are not
adding any extra fields to accommodate how we want the Ul to behave. Some operations become very
complicated if you try to do it all in one form, for example, showing a list of all the current customers.
Where does something like that go if you just have one form in your application?

Let's move on to the next step, now that we have decided how the application will be structured.

Create Customer

We have to define what information we want to track for each customer and then create those fields in
the data_Info form:

data_Info » Page 1 EH

Customer ID
Customer Name
Customer Email
Address 1
Address 2

City

State

Zip/Postal

Here you have a choice, you can either use all Single Line Entry fields or you can use the real data type
fields (i.e. dropdown, number, etc). In this case I have opted for using Single Line entry fields, since
the user will never see this form I don't have to worry too much about the field layout or
controlling/restricting user input. The only change that you may have to make is the “Maximum
number of characters” for any field where you want to allow more than the default of “50” characters.

Next we mimic the same fields in the Ul Form:

* Add/Edit Customer

Customer ID

Name Email
Address 1

Address 2

City State
Zip/Postal

This time we do care about how the form looks and controlling user input. We put the fields into a
section and choose the appropriate field type for the information being gathered.

We now have the form that will keep track of the customer data and the UI that the user will use to
enter it. The Ul Form is connected to the data Info form by using a Submit / Create Service
Configuration.

Each of the fields on the UI Form is connected to the corresponding fields of the data_Input form.

Note: To link a set of fields select a field on the left, then on the right and then click the connection
button in the middle.

(X

Service Configuration

1. Service 2. Inputs. 3. Outputs 4. Details

Create Input Assignments

Ul Form Demo - Customer Tracking / data_Info / Submit

Select source: (S_Submit)/ Create
¥ | Current User Select target:

= [Paged & My Re
[@| F_Image (€]
[Existin
3 A

b] Update (F_SingleLines) "Customer

Update (F_SingleLine) "Customer N

Update (F_SingleLine&) "Customer

Update (F_SingleLine0) "Address
Update (F_SingleLine1) "Address 2

Update (F_SingleLine2) "City" « 4

EEHEEEEE

iew: | Basic Update (F_SingleLine3) "State™
-

»

Assigned Inputs
Source Target

Page 1= Add/Edit Customer = Name = Value Update (F_SingleLine) "Customer Namea" JEE

Page 1 = Add/Edit Customer = Email = Value Update (F_SingleLine&) "Customer Email” 5 = -

Launch the UI Form, fill out the fields and then click the Add Customer button. To verify if you
record was created, close the form and open the View Responses from the manage page. Click on the
data_Info tab and you should see a customer record, if you don't or you received an error after clicking
the Add Customer button then its time to troubleshoot.

This example could be improved by first searching to see if the Customer ID that the user entered
already exists as you may not want to allow duplicate entries of the unique key! This document will
not go into detail for that enhancement, but it will require using a Search service to check if the
customer ID exists and then executing the Submit / Create if the ID is not found.

The Add Customer button will call the service to create the customer. We only want this button to
show when the hidden — Customer ID is empty (this means that the user did not select a row in the
existing customers table and is creating a new record). I used a rule to control the visibility of the

button:
E

Details for: Rule 3
Add Rule

When this is true: =
Rule 1 hidden - Customer ID Equals [v]

A fixed value|[v] + %@
Rule 2

Rule 4

Perform this action: =

F_UpdateCustomer Hide ﬂ 8@
F_AddCustomer Show [v] + 2@
Customer Notes Hide v + 2@
Show related
F_AddCustomer
Apply Apply and Close Cancel

View Customers

The Customers table shows the customers that have been created. Its data comes from a Search
service configuration that returns all the records in the data_Info form.

The service is called in the onShow event of the table:

This eventis invoked after the item is presented (either with the entir

Predefined Actions:
L Run a Formula

Search - Get Customers v
Add/Edit Service Configuration

¥ Calla Service

Custom Actions:
item.showldd (false);
item.showEdit {false);
item. showRemove {falae) ;

Note: The table action buttons are hidden by using custom javaScript in the same event.

In the service, no inputs are defined, on the Input tab, which will return all of the records from the
data_Info form. On the Output tab each field from the service is linked to the columns of the table.

Service Configuration

4. Details

1. Service 2. Inputs 3. Outputs

Create Output Assignments

Demo - Customer Tracking / data_Info / Search Ul Form
Select source: Select target:
. W] " _TEgT = .
rEmail ‘) L
= T Existing Customers L)

t(F_SingleLine5) “Customer ID" « (&) P
= B customers (L)

[Customer Name + ()

t (F_SingleLine) "Customer Name" « (@

t (F_SingleLinef) "Customer Email’ « @))
EZ Customer Email + L)

t (F_SingleLine0} "Address 1" (I o

EZ CusiomerID

t(F_SingleLine1} "Address 2" (1) L
i] Add Customer Note)

After the service completes there is some clean-up that needs to be done. There is a service call listener
in the onLoad event of the form that does the work:

var srv_AC = form.getServiceConfiguration('SC AddCustomer');
srv_AC.connectEvent ("onCallFinished", function (success)
{
if (success) {

BO.F hiddenID.setValue(''");

//clear client fields

BO.F name.setValue(''");

BO.F custID.setValue('');

BO.F email.setValue('');

BO.F addressl.setValue(''");

BO.F address2.setValue(''");

BO.F city.setValue(''");
BO.F state.setValue('');

BO.F zip.setValue('');

//clear any table selections
form.getPage ('P_NewPage') .F Table.setSelection(-1);

form.getPage ('P_NewPage') .F Table(.setSelection(-1);

//refresh customer table

form.getServiceConfiguration('SC GetCustomers') .callService();

//refresh note table

form.getServiceConfiguration('SC GetNotes').callService();
}
) ;

The code clears all the fields in the Add/Edit Customer section and calls the services to refresh the
customer table and the note table.

Update Customer

Each customer that is created can also be updated. There are a few parts to this feature of the
application; selecting the customer to update and then submitting the changes.

Get the Selected Customer Detail

The user needs to first select which customer they want to update.

Customers
Customer Name Customer Email Customer ID
John J Doe jdoe@ibm.com 123456789

hsimpson@E@home.co

Homer Simpson m 234567890

MNew Customer asd 123123123

asd asd ga4q

qweqwe asd@ca.ibm.com 123 =

And then that customer's detail appears in the Add/Edit Customer section so that they can review and
make edits.

 Add/Edit Customer

Customer ID

234567890

Name Email

Homer Simpson hsimpson@home.com
Address 1

234 Sprinfield Drive

Address 2
asdasd asdasd test

City State
Springfield v
Zip/Postal
12345

Update Customer Cancel

How does this work? Let's look at the application logic:
1. User clicks a row of the table.

2. The customer id for the selected row is saved in a hidden field, so it can be used in a service
call.

3. A Retrieve service call is performed to return the details for the selected customer.
Let's look at the code involved. In the onClick event of the Customer table we see the following:

var r = item.getSelection();

if(r !== null) {
//set the customer ID into the temp field
BO.F hiddenID.setValue(r.F SingleLinel.getValue());
//set the customer info into the fields for update
BO.F custID.setValue(r.F SingleLinel.getValue());

}

This code verifies that a row has been selected and then copies the customer id to the Customer ID field
in the Add/Edit Customer section. In the onltemChange event of the Customer ID field I have the
following JavaScript:

if (BO.F_hiddenID.getValue() !== "") {
form.getServiceConfiguration('SC GetCustomerDetail').callService();

}

I want to make sure that this service is only called when the field is not empty. There will be times

where we clear the field's value and if we don't use this code then the service will run, returning an
unexpected result.

The service returns all the detail for the customer id specified in the field.

Service Configuration

2. Inputs 3. Outputs 4. Detai

Create Qutput Assignments

Demo - Customer Tracking / data_Info / Ul Form

JEDETE Select target:

Select source:

T{F_Smglelines) "Customer I07 1L/ Name + L) ~

t (F_SingleLine) "Customer Name” + (1) ~ = Email v @

t (F_SingleLine&) "Customer Email" « (@ [Address 1 v @

t (F_SingleLineD) "Address 1" + (1) D Address 2 » @

t (F_SingleLine1) "Address 2 v (@) - @ ciy v @

t (F_SingleLine2) "City” + @ =] state v @

t (F_SingleLine3) "State” « (1) Zip/Postal v @ v

t (F_SingleLine4) "Zip/Postal" + (1) v View: | Basic -

£ >
Assigned Outputs
Source Target
Result {F_SingleLing) "Customer Name" Fage 1 = Add/Edit Customer = Name = Value = A
Result {(F_SingleLined) "Customer Email" Page 1 = Add/Edit Customer = Email = Value ®
Result (F_SingleLine0) "Address 1” ';:?;1 ~ AddEdit Customer = Address 1> %
Result (F_SingleLine1) "Address 2° \Pf:?u? > AdalEdit Customer = Address 2> ®
Result {(F_SingleLine2) "City" Page 1 = Add/Edit Customer = City = Value ® 2
OK Apply Cancel

After the service completes we perform the same clean-up work that we did for adding a new customer.
There is a service code listener in the onLoad event of the form properties:

var srv_UC = form.getServiceConfiguration ('SC UpdateCustomer');
srv_UC.connectEvent ("onCallFinished", function (success)
{
if (success) {

BO.F hiddenID.setValue(''");

//clear client fields

BO.F name.setValue(''");

BO.F custID.setValue('');

BO.F email.setValue('');

BO.F addressl.setValue('");

BO.F address2.setValue(''");
BO.F city.setValue(''");
BO.F state.setValue('');

BO.F zip.setValue(''");

//clear any table selections
form.getPage ('P_NewPage') .F Table.setSelection(-1);

form.getPage ('P NewPage') .F Table(O.setSelection(-1);

//refresh customer table

form.getServiceConfiguration('SC GetCustomers') .callService();

Create Customer Note

~ Existing Customers

Customers = Add Customer Note
Customer Name Customer Email Customer ID

Date
John J Doe jdoe@ibm.com 123456789 212612015

hsi home.
Homer Simpson ms'mpw"@ OMELE 534567800 1

Multi-Line Entry

New Customer asd 123123123

asd asd 999 2

qweqwe asd@ca.ibm.com 123

Customer Notes

Date Note Add Note 3
103203201 first note 4

2M6/2015 | new note

hidden - Customer ID
234567890

Let's first look at the functionality of this section and then dive into how it is implemented.
1. Select a row in the Customers table.
2. The Add Customer Note section appears, enter in a comment.

3. After tabbing out of the note field the Add Note button will become active. Click the button to
attach the note to the selected customer.

4. After the note is attached the Customer Notes table is refreshed so that the note can be viewed.

Now let's break down what you need for each part.

Customer Table

We can skip over the customer's table because we are leveraging the same hidden field that is populated
when the user selects a row of the Customer table (this was discussed earlier in the document).

Add Customer Note Section

 Add Customer Note
Date

2126/2015

Multi-Line Entry

Add Note

First, it is important to remember that the notes are stored in a different form within this application
called data_Notes. This section that we have created is just providing a way of interacting with the
data in that other form.

The Add Customer Note section is controlled by a Rule; if the hidden customer ID is empty then hide
the section:

Details for: Rule 2

When this is true: 7

hidden - Customer ID Equals T
2 @
Afived value v - ﬁﬁ
Perform this action: 2
Add Customer Note Hide v + %@

The Date field cannot be edited by the user and is automatically set to the current date. This is
accomplished by using javascript in the onShow event of the date field:

BOA.setValue (new Date())

item.setActive (false);

The Add Note button uses a service to insert the note information into the data_Notes form. The
service is triggered when the button is clicked by defining it in the Advanced properties of the button:

Edit Button Properties

Basic | Advanced Evenis

ID: &
F_AddMote

Service:
#| Call a service when clicked
Create - Add Note v

Add/Edit Service Configuration

The service performs the Submit / Create operation for the data_Notes table and looks like this:

Service Configuration

1.5 ce | Zinputs | 3 Outputs | 4. Details

Create Input Assignments

Ul Form Demo - Customer Tracking / data_Notes /

ST T Submit (S_Submit) / Create

%% CurrentUser Select target:
= Page i @ By Repeated Creation (@
& F_Image @ Update (F_CustiD) "Customer ID" « U

£ Existing Customers @ & Update (F_Date) "Date” + (1

] Add/Edit Customer &)

Update (F_Notes) "Notes” + (@)

View:| Basic

Assigned Inputs
Source Target

Page 1 = Existing Customers = Add Customer

() "Notes” B %
MNote = Multi-Line Entry = Value Update (F_Notes) Notes
Page 1= Existing Customers = hidden - e
g g Update (F_CustlD) "Customer ID" F
Customer 1D = Value
P 1= Existing Cust Add Cust e
age 1= Existing Customers = ustomer Update (F_Date) "Date” B i

Note = Date = Value

There are a few things to take note of:

1. The fields from the Add Customer Note section are linked as inputs to the service and connected to
the matching fields in the data_Notes table.

2. In this version of the application we are not linking anything from the Outputs. As an enhancement
you could link the Number of Records created to a field in your form and then react if the note was
not created.

3. It is a good idea to change the Label and ID of the Service to better describe the operation being
performed. If you don't, then referencing them in custom JavaScript code becomes confusing.

After the Service runs to create the note record we need to clear the field in the Add Customer Note
section and we need to refresh the Customer Notes table. To accomplish this we use a service call
listener that is defined in the onLoad event of the form:

var srv_AN = form.getServiceConfiguration ('SC_AddNote');
srv_AN.connectEvent ("onCallFinished", function (success)
{
if (success) {
//clear note field
BO.F Paragraphtext.setValue(''");
//refresh note table
form.getServiceConfiguration('SC GetNotes') .callService();
}
}):

Customer Notes Table

The Customer Notes table is populated from a service that returns all the records in the data_Notes
form that match the customer ID in the hidden — Customer ID field.

(]

Service Configuration

2. Ilnputs | 3. Outputs | 4. Details

Create Qutput Assignments

Demo - Customer Tracking / data_MNotes / Ul Form
Search Select target:
Select source:
[ab] Updater Email "L/ ! ~
5 Creation Time '/
@b] Author iDL i
Author Name () E] Note v @
Author Email @) [hidden - Customer ID (L)
[ab| Result (F_CustlD) "Customer ID" [CustomerlD Exists? (1)
A Q. - v
E Result (F_Date) "Date” « (1) 3 Adi t Cusfomer 'L
v View: | Basic -

Result (F_Notes) "Motes” « [€)]
< >

Assigned Outputs
Source Target
Page 1 = Existing Customers = Customer Notes E 52

S hed R ds = Result (F_Notes) "Motes”
earched Records = Result (F_Notes) "Motes + Note = Value

Page 1 = Existing Customers = Customer Notes H 52

Searched Records = Result (F_Date) "Date”
(F_) = Date = Value

OK Apply Cancel

The service is triggered in the onltemChange of the hidden — Customer ID field:
if (BOA.getValue () !=="") {
form.getServiceConfiguration ("SC GetNotes") .callService();
} else {
//clear the Customer fields

app.getSharedData () .getItem(page.F Section0);

Applying the Concepts to Your Own Applications

Now that the application and its functionality have been described the next step is for you to figure out
how to replicate them in your own application. This can be a bit tricky, especially if you are not
comfortable writing JavaScript.

My advice to you would be to

1. Make sure you have thought through the flow of your application.

2. Make sure you understand the business process well enough that you can compartmentalize the
pieces.

3. Build the basic structure first before spending time on making it pretty.

4. When testing/building start with just a few fields to validate the process then add the other fields
after once the process is established. If anything has to change or you have to switch gears then you
haven't wasted time adding optional fields.

I know that this document is imperfect and it will not contain ALL the information that you might need.
I have posted lots of other samples, documents and videos that you might also find helpful at
https://www.ibm.com/developerworks/community/wikis/home?

lang=en#!/wiki/W65fd19fc117a _4d18 87e4 5f7b8a6727cc

